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Abstract--The equations governing the motion of the paper sheet in a press nip and the anisotropic 
percolation of the water in the sheet, are derived in invariant form. In order to avoid restrictive 
assumptions on the configuration of the paper sheet, the system of coordinates is generated by the flow 
of fibrous material through the nip region. With the corresponding constitutive equations, the formulation 
consists of a system of partial differential equations for the metric tensor of the coordinate system, and 
for the water velocity. For practical use, the solution is then mapped back into a cartesian frame of 
reference. Quantities of industrial interest, such as the residual water content and stresses, as well as 
the press-induced anisotropy, can be calculated in principle. A Galerkin finite-element approximation 
is implemented using rectangular linear elements. Two case studies are presented, for large and small 
permeabilities, and the corresponding differences in water pressure and velocity are in general qualitative 
agreement with the observations. Finally, the predictive value of the model is demonstrated by the 
dependence of the solution on the imposed shear stress and its gradient across the sheet. 
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i .  I N T R O D U C T I O N  

Few problems in the mechanics of porous media involve fast finite deformations of the solid phase 
in such a way that a Eulerian description of  the flow field and the use of  convective derivatives 
are required. The wet pressing of  paper pulp is such a problem. 

The wet pressing is carried out by squeezing the pulp on a felt mat by running it continuously 
between two hard rolls. In the process, some of the water is forced from the pulp into the felt, and 
some is forced out of the system. Research has been conducted in both the analytical and 
experimental areas. The theoretical approach consists of modeling the pressing process, and solving 
the corresponding equations of  the fluid and solid motions. Some simplifying assumptions are made 
in the derivation of  the model. In the experimental approach, emphasis is placed on the laboratory 
scale duplication of  the actual process. Here too, the difficulty of performing the necessary 
measurements leaves us with an incomplete description of  the process. 

The earliest effort to model the wet pressing process was made by Campbell (1947). He assumed 
that the compression of the pulp is homogeneous and that all the pressure is borne by the fluid 
phase, both assumptions now known to be approximate at best. Starting from the Kozeny-Carmen 
equation for flow through porous media, he derived an equation to predict the time required to 
press a sheet of wet paper from one solid concentration to another. Campbell realized that the 
multiplication of pressing time and pressure, termed the pressing impulse by Wahlstrom (1960), 
is related to the change in consistency during pressing. Campbell's model accounted for the effect 
of the specific area of the pulp. As the water is pressed out of the pulp, the specific area increases. 
This increases the pressing impulse needed to cause a given increase in the solids content of the 
pulp being pressed. The importance of "impulse" is now well-established. Bullerwell & Baade's 
(1984) results show that the impulse is an effective way of characterizing a press, although the 
theory fails at extreme values of time or pressure. 
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F igure  1. The 4 phases  of  the press nip, af ter  W a h l s t r o m  (1960). 

The next advance in wet press modeling is due to Wahlstrom (1960). He divided the plain press 
nip into three phases, based mostly on geometrical considerations. Starting from a known geometry 
of a nip and using Darcy's law he concluded that water is removed from the paper into the felt 
in the first phase and then removed to the inlet side of the nip. In the second phase, he concluded 
that "rewetting" is taking place by capillary action. He also found the hydraulic pressure in a plain 
press to be much higher than in a suction press. 

Nilsson & Larsson's (1964) model of the press nip divided it into four phases, as depicted on 
figure 1. The first phase extends from the entrance of the nip until the point where the sheet gets 
saturated. The second phase extends up to the middle of the nip; most water removal takes place 
in this phase. The third phase extends to the point where the hydraulic pressure becomes zero. 
The fourth phase consists of the rest of the residence time in the nip; in this phase, the felt and 
the sheet expand, and some rewetting of the paper sheet takes place. The amount of rewetting is 
still a matter of conjecture. 

Wilder (1967) extended the overall material and force balances of the press nip, as presented by 
Wahlstrom (1960) and by Yih & McNamara (1964). He introduced the inertial term in Darcy's 
flow equation, which would be significant for higher flow velocities. In all these models, only 
velocities in a direction normal to the face of the paper sheet are considered. 

In recent years, Carlsson et aL (1983) have modeled the paper behavior in the nip as that of a 
simple Kelvin element. Again, their attempt has been to model the overall pressure and downward 
flow velocity profiles. Their results indicate that the point of maximum hydraulic pressure need not 
be before the middle of the nip, as was predicted by Wahlstrom (1960). 

Jewett (1980) approximated the paper mat as a homogeneous porous medium, with different 
points in the system being at different compression levels and hence at different pressure levels. 
The force and material balances and Darcy's law provided the basic equations, which were solved 
using the finite-difference technique. The presence and flow of air was accounted for. However, it 
is a one-dimensional model and more closely approximates the laboratory-scale flat-platen presses 
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than industrial continuous flow presses. The application of  the model to industrial presses required 
the determination of  an arbitrary scaling factor, termed the "nip efficiency". 

MacGregor (1985) has presented some nonmathematical models based on his perception about 
what is going on in the nip. These are based on experimental work done by himself and by Beck 
(1983). In these models, the in-plane fluid velocity plays an important role in altering the structure 
of the paper. 

Experimental work has mostly been done on flat-platen presses with various pulp types, 
surface configurations, pressure profiles and various ways of  sensing the interfacial pressures and 
the change in thickness. Swain (1980) has studied the compressibility of various types of  felts in 
a flat-platen press. Chang (1978) and Ceckler & Thompson (1982) have done exhaustive studies 
on the compressibility of  paper mats in such apparatus. Ceckler & Thompson have attempted to 
apply the compressibility and permeability measurements to industrial presses, using Jewetrs 
model. Some typical results are shown in figure 2. Carlsson et al. (1983) have also worked on similar 
apparatus and found that the "water retention value" of  the pulp has a strong effect on the removal 
of  the water. This implies that water is squeezed out of  the fibers, in addition to the removal of  
the free water outside the fibers. 

Beck (1983) studied the surface pressure profiles in an industrial scale press. His work indi- 
cated that the hydraulic pressure on the surface of a felt in a nip falls in a relatively wide range 
of  values. It was also found that there are sharp pressure gradients over grooves or holes in 
"transversal flow" press rolls. This explains to some extent the shadow marking and groove 
marking in paper. 

The purpose of this article is to establish a rigorous mathematical framework for the study of 
the pressure, stress and velocity fields, as well as the ultimate mechanical properties of the paper. 
Insofar as this article constitutes a first step in that direction, the emphasis is placed on generality 
and formalism, rather than on the realistic character of  the system. Two significant elements in the 
problem were thus deleted temporarily. The role of  the trapped air, and even the felt mat, are 
not described herein. How they can be accommodated in the model, is discussed in section 7. 
Such drastic simplifications are counterbalanced by a high level of generality in all other aspects 
of  the analysis. All significant parameters identified previously are part of  the model, or can be 
calculated from numerical results. A complete map of the mat configuration (bending), stresses, 
pressure and velocity fields, can be obtained under a variety of imposed boundary conditions. 
Such generality comes at the cost of more sophisticated techniques: tensor analysis in general 
coordinates turns out to be the right tool in this instance. The first part of the article is devoted 
to the derivation of  the equations. The constitutive relations correspond to the simplest case of 

ea 

.E 

10-13 

10-15 

10-17 

BSWKO 290 CSF 

Low consistency 

+ Test 4 

10-19 i i  IJ i t l  i i l ~ l h l l l l l l i l l l i i l H i l f l h l l l l l l l l l l l l l ] l l l l l l l l l l l [  

0.2 0.3 0.5 0.7 1.0 

Concentration (g/cm 3) 

Figure 2. Permeability (m 2) vs concentration (g/cm3), after Ceckler & Thompson (1982). 
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practical interest. The issue of the reference metric tensor and the mapping of streamlines is 
discussed next. Finally, the boundary conditions are derived. 

2. F O R M U L A T I O N  OF THE P R O B L E M  G E N E R A L  E Q U A T I O N S  OF M O T I O N  

Our approach starts from the observation that, when the motion of the fiber mat is described 
in cartesian coordinates, enormous difficulties are encountered in imposing realistic boundary 
conditions. The core of  the issue is the actual location of the boundaries. Rather than assuming 
an approximate mat  configuration, we decided to express the fact that the flow itself generates the 
boundary. 

The coordinate system results from our choice to describe the wet pressing process in a Eulerian 
frame of reference. Then, the flow of material can be considered to be in steady-state. When we 
imagine material points flowing through a region of interest, the pathlines (identical to streaklines 
and to streamlines in a steady-state flow) identify one family of  coordinates, including the boundary 
at the face of  the sheet. The other family is identified as timelines, in which material lines (not 
parallel to the direction of the flow), released at some initial time, are mapped at regular intervals 
(see figure 3). 

The system of coordinates is entirely determined if we fix the time interval and the initial 
(upstream) spacing of the pathlines. The choice will be made below, so as to simplify the relation 
between anisotropy and strain. 

In this coordinate system, generated by the solid material, but not tied to it, the motion of the 
fiber mat  will be similar to that of  a fluid, except for the stress-strain constitutive relation. Thus, 
it is convenient to assume that the fiber mat can be described as a continuum. This assumption 
is not incompatible with the practical situation of a thin sheet, in which the thickness of the 
individual fibers is smaller than, but comparable to the sheet. Although the texture of  the fibers 
is significant locally, the steady-state Eulerian description averages the fiber content over a period 
of time, in effect blurring the texture to a continuum. This is the same assumption made by 
a number of  authors in the study of mixtures [e.g. Green & Naghdi (1965, 1979), Thigpen & 
Berryman (1985), Bedford & Drumheller (1983) and Allen (1985) among others; see also Eringen 
(1976) for a thorough presentation], allowing for the construction of constitutive relations 
satisfying the axioms of rational mechanics. 

The coordinate system in which both fiber and water flows will be described is obviously not 
rectangular; moreover, the local base vectors, determined by the spacing between coordinate 
surfaces, are not normalized. Thus, the partial differential equations of  motion must be written in 
tensor notation, with co- and contravariance denoted by sub- and superscripts, respectively. 
All derivatives in the general theory, must be understood to be with the correct variance. Thus, 
notational changes are made to the paper of  Thigpen & Berryman (1985), where the assumption 
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of an elastic solid phase corresponds to our needs. However, their assumption of small solid 
velocities is inadequate in our case, and changes are made accordingly. 

In the derivation of  the general equations, the metric tensor does not have to be specified, other 
than to use the fact that it is generated by the fiber flow. The effect of  the specific choice of the 
coordinate system on the metric tensor and the velocity vectors, will be discussed below. 

In succession, we will address the mass conservation (continuity) equations for the water and 
the solid, and the respective momentum equations. The velocity vectors will be denoted as v for 
for the water and u for the fiber mat. 

Water can be considered as an incompressible fluid for most applications. The incompressibility 
condition is expressed by the kinematic constraint that d i v v =  0. However, in curvilinear 
coordinates, the expression for the divergence must reflect the fact that the base vectors themselves 
change from point to point. The general expression is thus 

D v k  - -  c3vk ~- v T * * i = O  
D x  k c~x k 

and 

• 1 . / ~  c3 ~ \ 
FJik = x gJmls~..i g*m + ~ gi,, - -  z \ c x  v x  ~ x  ~ gi,  = ri*g; ) 

[1] 

[2] 

Fi ,  is the Christoffel symbol of second kind. The F term accounts for the change in metric from 
point to point e.g. Fliigge (1972). 

The solid material experiences deformations as it flows from one location to the next. In the 
process, some of the water permeating the fibers is forced out, the volume occupied by a given set 
of  fibers decreases and shear deformations take place as well. However, as the fiber flow generates 
the coordinate surfaces, the conservation of mass should be expressed as a p p a r e n t  incompressibility. 
In other words, the fiber mat is compressible in fact, but any change in specific volume is accounted 
for by the change in metric of the coordinate system. Thus, 

c3u k 

c~x* - 0.t [3] 

The momentum equations are written next. Under our assumption that the solid and the liquid 
phases are overlapping immiscible continua, the fundamental equations of rational mechanics 
apply. Because temperature is assumed to be uniform in the web, and among the phases, no energy 
considerations need be introduced. As a further simplification from the general theory of mixtures, 
we assume that mass diffusion is not dynamically significant, based on the lack of evidence to the 
contrary. 

In steady-state motion, the convective derivative of  the velocity field is to balance the applied 
and internal forces per unit mass. The familiar flow equations can be used, provided we use 
covariant derivatives. Thus, 

. D v  ~ D z  !i 

p V ' ~ x ~ x  j =.f~4 Dx '  [6] 

and 

• Du' D T  ~j 
P u  I ~ = F i + Dx ~ ,  [7] 

tConsistency with this result is observed if mass conservation is derived in detail. The fiber density is inversely proportional 
to the square root of  the determinant of  the metric tensor: 

g = dtm gq. [4] 

Then the mass  conservation equation is expressed in invariant form as 

D u ~ 1 /i~u ~ \ u k 
! - -  u T ~ : , )  - 7 r ~ ,  = o ,  Ox* ~ g  x /g  \~'x'~ + / x /g  [5] 

equivalent to [3]. 
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where p and P are the densities of the water and the solid, respectively. The right-hand-side terms 
contain the interphase forces and the single-phase stresses in the water and the solid. These 
equations are a particular case of those used by Thigpen & Berryman (1985), where we neglect body 
forces and gradients in the phase fraction of solid and water. All displacements in the solid must 
also satisfy the compatibility equation, more easily spelled out below, [15]. 

3. C O N S T I T U T I V E  R E L A T I O N S  

The rational theories mentioned in the previous section provide the framework for the general 
form of the constitutive relations, which enable us to express the forces and stresses in terms of 
the primary dependent variables (v and u). Again, we shall use the results of Thigpen & Berryman 
(1985), which include the case of a gaseous phase as well, with simplifications that appear 
reasonable for a first study of the wet pressing process. 

The stress tensors must be given by constitutive equations, expressing the response of the 
materials to imposed conditions. In this context, where the possibilities of the model are being 
explored, the balance between generality and simplicity is difficult to gauge. Simplicity cannot be 
at the expense of a realistic character of the process: to that extent, the fact that the theory of 
Thigpen & Berryman (1985) includes the motion of air opens the way for eventual generalizations. 
More importantly, once the simplified problem (saturated mat) has been identified, the thermodyn- 
amic constraints and the invariance properties derived from the rational mechanics of constitutive 
equations may not be violated. 

Thus, it is sensible and consistent with our approach to take the equations of Thigpen & 
Berryman (1985), with certain terms deleted if they arc thought to be unimportant in wet pressing, 
as long as the theory is not violated. Other changes to the theory are required by the fact that the 
velocity of the solid phase is large, and that displacements from a reference location are not suitable 
in a Eulerian description. 

The construction of invariant constitutive relations depends on the list of admissible primary 
variables. For the fluid, the stress would depend on the local metric, and on the symmetric part 
of the (covariant) velocity gradients, by analogy with the classical theory. Thus, in the absence of 
physical indications to the contrary, the list of primary variables is closed, and the constitutive 
relation must be of the form 

where 

rq(g i;, s 'O,  [81 

• 1 (  • Dv  i Dv2"~ 
s'J = 2 g'k ~ + g;k DX'J" [9] 

Within this class of constitutive equations, the dependence will be limited to linear expressions 
in the arguments. In continuum mechanics, this is known to be a rational approximation, 
satisfactory in many engineering problems. Then, 

r '; = - rtg' i  + 2 # s  ';. [ 10] 

In [10], n and g are functions of the scalar invariants of g and s, to be determined either 
experimentally or for most effective simplification of  the equations. Within the framework of 
Navier-Stokes fluids, n can be interpreted as pressure, and will vary from point to point: it will 
provide the connection to the equations for the solid below. In line with our strategy to simplify 
equations as much as possible, the other parameters, such as p, will be considered as independent 
of any flow quantity. 

For an elastic solid (see appendix A for a viscoelastic case), the constitutive relation is even 
simpler, since the strain tensor is equal to the departure of  the local metric tensor from its initial 
value. From an elastic material, we have the stress-strain relation 

T'(y~j), 
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where 

Yu = gu - gO. 

The linear approximation to the functional dependence (e.g. Fliigge 1972) gives 

T u = Eijkm~/km 
2 ' [l l]  

where 

E u k ' -  E ~ ( , 2 ~ V ~ g U g k m + g ~ k g J " + g ' m g j k ~  [12] 
2(1 + V) \ l -- ZV / 

for the elastic case. Here, E is Hooke's modulus and v is the Poisson coefficient. For later 
convenience, the stress tensor can be split into its isotropic and deviatoric parts. We find 

E E 
" I_i,,,_jk~,, [13] TiJ = g,j gkm.j,km + - -  ( __gijgk,'n _.[_ ½gikgjm + ~ ;  ~ JZk.," 

6(1 + v) 2(1 + v) 

Hence, the force term in the momentum equation can be calculated, when we remember that 
the covariant derivative of the metric tensor vanishes identically and that the covariant derivative 
of  a scalar reduces to its partial derivative: 

D T  ~j . . ~ H  E D ' k ~ k • !_~,,,_/k~, [14] 
Dx j - g'J--+Ox j 2 ( I ~ D x ~ x  j ( - g ' j g +  " + s g ' g J ' + 2 ~ ;  s )~k,,, 

where 

E km 
H -  6(1 + v )  g 7k,,. 

Finally, the displacements in the solid must satisfy the compatibility equation 

DZ)'lt D2722 D2712 = O. [15] 
Dx~-~[ + ~ - 2 Dx, Dx-'--~_ 

4. I N T E R P H A S E  FORCES AND CHOICE OF THE I N I T I A L  METRIC 

The interphase forces can be constructed in a similar manner (Bedford & Drumheller 1983). 
Since gravity is not expected to be relevant to the flow dynamics, the list of variables can be 
limited to the difference in velocity between the phases, and possibly the metric or deformation 
tensor. The only invariant form resulting from this list is, in the linear approximation, the Darcy 
term 

f i  o~(u i - lfl) [16] 

and 

F i  = f l  ( u '  - v'), [17] 

where the scalars c¢ and fl are undetermined functions of the scalar invariants of  the system, and 
are to be modeled. Internal equilibrium requires that 

:~ = - , , q .  [183 

While [16] and [17] are a formal consequence of the admissible list of variables, one cannot 
overlook the physical assumption made at this point. Indeed, if the equations are applied to the 
simple case of a stiff porous medium at rest, the simple balance between the pressure gradient and 
the permeability, 

8H 
c~x/- ~V/, [19] 

IJMF 20/2--N 
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shows that the fluid velocity is aligned with the pressure gradient, with a proportionality factor 
independent of direction. This can only be true if the principal directions of the initial metric 
coincide with those of the Darcy permeability matrix, with the length of  the axes such that the 
permeability can be characterized by a single scalar (all eigenvalues equal). 

Thus it becomes apparent that the choice of axes at the upstream section is implicitly made in 
the list of variables leading to [16] and [17]. The principal directions of the permeability matrix can 
be safely assumed to be parallel and perpendicular to the face of the sheet. The length of the basis 
vectors must be adjusted so that the parameter c~ is the same in both directions. Thus, the axes 
are completely determined (up to a scaling factor) at the upstream end. This point will be used 
in the discussion of the boundary conditions (section 6). 

Besides ~, another parameter must be introduced in relation to the boundary conditions. When 
integrated over a surface element, the total pressure (say) acts partly on the fibers and partly on 
the water. Following Biot (1955), let us introduce the porosity f of the fiber mat as the measure 
of the ratio of nonsolid areas to solid areas in a section of the material: 

Aw 
f = ATf; [20] 

Aw stands for the area occupied by water and Ar for that occupied by fibers. It is assumed 
that the porosity does not depend on the orientation of the section. Stresses at the boundaries 
will be calculated by weighing the single-phase stresses according to the corresponding areas of 
contact. 

The modeling of the two parameters ~ and f can now be addressed. Both are related to the 
deformation of the mat, i.e. either to g or 7. Strictly speaking, scalar functions such as ~ and f 
will depend on all the scalar invariants of the metric tensor. The simplifying assumption is 
introduced that only the determinant (first invariant) needs to be considered; i.e. we assume that 

and f d e p e n d  on g only. The experimental results of Ceckler & Thompson (1982), presented in 
figure 2, correspond approximately to the power law 

ot = A g -  27s [21] 

where the parameter A varies from material to material, and can be determined experimentally. 
This relation may have to be linearized for computational convenience. 

The relation between the porosity f and the parameter g must also be established. Under the 
condition of isotropy of the porosity, it can be shown (e.g. Bedford & Drumheller 1983) that it 
is directly related to the phase fractions. With our definition of porosity, we have: 

f =  4,(1 - 4,), [22] 

where the phase fraction of water (per volume) can be calculated directly from the local metric, 
the compression of the solid and the upstream water content. At the upstream boundary, a relative 
volume fraction of water can be given as 4,0, and the determinant of the metric tensor as go. 
It is well-known that this determinant measures the volume element based on the local base 
vectors. Then, the volume constructed on the base vectors contains a volume (1 - 4,0)g0 of solid. 
If we neglect the compressibility of the solid itself (only allowing for a change in apparent volume 
due to the expulsion of water from the saturated medium), the definition of the coordinate system 
ensures that the same volume of  solid is contained after strain. Thus, the volume fraction of water 
after strain is 

t ~ t  1'2 4 ,  = 1 - ( 1  - 4 , 0 )  . 

where it is understood that 4' must satisfy the condition 

0 < 4 ' < ! .  

Combining these expressions gives the model for the porosity under the form 

f = g - (1 - 4'0)g0 
( I - 4'0)g0 

[23] 

[24] 

[25] 
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Finally, the total pressure is obtained by adding, in proportion to the respective porosities, the 
hydraulic and solid pressures acting on any control surface (e.g. Fliigge 1972). Thus, 

total pressure = (1 - f ) .  I-I +fro. [26] 

Having ascertained that viscous terms do not introduce new unknowns (only material parameters 
such as/~ and/~s), the viscous forces will be ignored in the remainder of this paper. Two more 
elements should be introduced before substitution in the general equations of motion. We assume 
(subject to eventual confirmation from numerical results) that the convective terms in the water 
equation are due mostly to the convection by the mat itself, and that a linear approximation for 
the relative momentum equation would be adequate. Thus, we define 

U k = v k - u k [27] 

for the relative velocity of  the water in the fiber mat, and ignore terms quadratic in U. 
Finally, full advantage is taken of the choice of  metric at the upstream end. As discussed 

in section 2, the unknown boundary of the fiber mat can be taken to be a coordinate surface, and a 
streamline for the flow of porous solid. Hence, one entire family of coordinate lines (in the 
plane of  the flow) can be made of  streamlines, so that two of the velocity components for 
the solid flow would vanish identically. Thus, we can begin to define the coordinate system by 
the equations 

u 2 = u 3 = 0. [28] 

Furthermore, with the other coordinate surfaces as timelines, the first component of velocity is 
constant, and 

u' = V. [29] 

Equations [28] and [29] merely express the fact that the flow of  solid material generates 
the local base vectors. Rather than having variable velocities in a cartesian coordinate system, 
we have uniform flow in a variable metric. The flow problem has been reduced to finding 
the coordinate system in which the flow of  solid material is uniform. For a chosen time 
interval, the spacing of the streamlines at the upstream boundary  completes the coordinate 
system. 

It follows that the continuity equation [3] for the fibers is automatically satisfied. For 
convenience, the x ~ (streamwise) coordinate will be written as " t "  and the cross-stream coordinate 
x 2 as "z" .  Equations [6] and [7] can be spelled out as 

OU I OU 2 
2 k k = 0, [30] Ot + ~  + UIF~l + U Fk,_+ F~.~ 

and 

OU I ) Drt 
p rl,+-Ti-+rl,u'+rl2u:+u'r',,+u2r , = - A g  275U'---Dx' [31] 

aU 2 ) 
p F~ .+~-~+F~ ,U '+F~2U2+U'F~ ,+U2F~t  =-Ag-2TSU 2 - -  

which can be solved for U j, U 2 and rt once gq is known, and 

PF,,  = Ag-27sU' 2(l + v) l _-2v v ~3 ,2 ~__~x,(gk.,gO,,,)}.._ 

O K  

Dx-" [32] 

2(! + v) j(glkgj,,,gO,,,) [331 
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and 

PF~t = Ag 275U2 - -  - -  } 2(I + v) ! 2v g21 
_ ~ (gk,,gOm) + g ~X 2 (gk,,gO,,) 

E D 
2(1 + v) Dxj(g2kgj,,gk,,)o [34] 

governing the field orgY% together with the definition [2] of  the F s, the compatibility equation [15], 
and with "D"  denoting the covariant derivative. The reference metric at a given location, serving 
in the definition of  the strains, is calculated as follows. 

With the length of the streamwise axis taken as proportional to the streamwise velocity V, the 
anisotropy defines the length of the e2 axis as a. The spanwise axis can be taken as an arbitrary 
constant under the two-dimensional flow assumption, and will be ignored in the following. Hence, 
the initial metric tensor is of  the form 0) 

(g~jl,=0) = a2 with g = 

As the material is convected, the deformation can be decomposed into a rotation and a pure 
strain applied to the initial metric [35]. In matrix notations, we can write 

g = STRTg I, = 0 RS, [36] 

where S and R stand for the straining and rotation matrices, respectively. When we call )~ and 
22 the eigenvalues of the metric tensor, 

= 5[g,~ + g22 + xfl(g,, - g22) 2 + 4g~z] 

~ 2 ~  1 5[gll +g22 x/(gll 2 - -g22) + 4gh], [37] 

the matrices S and R can be calculated easily: 

and 

R = 

I 4  g12 £2 -- g22 
(~.l__g,,)2+g~2 4(2 ,  2 --g22) +g~2 

L~_~t 2, --g,, g,2 

~g,z)2 + g~2 x/().2-g22)2+g~2.~ 

[38] 

gl2 22-- 22 1 

= 21 -g l ,  gl2 ~ [391 

D D- .J 

At any point, the reference metric gO is defined as that corresponding to local coordinates 
obtained by relaxing the stresses locally: in the principal axes of  the tensor g~, this amounts to 
relaxing the normal stresses. Thus, gO is obtained by rotating the initial metric into the principal 
directions of  go. Thus, 

I _~ 21 -gll 
D (gO)= L22 ~D g22 gl__Z 

D 
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o r  

ffa 2(2,-gl,)2+__V2g~2 (V2-a2)g,2(~l-gll)] 
/ (2' - g " ) 2  +g~2 i ~  --- gl' ) ~  q- g]~ [40] 

(gO)= ] (-v2-a2)g'2('~' -g,,) V2(A,-gu)a2g]2 
L. (2, - g,t)2 +g~2 (2, --g,,)2 +g~2 

is known at every point, if the metric tensor is. 
In this approximation, we have reduced the problem of wet pressing to a system of 6 partial 

differential equations for the 6 unknowns U ~, U 2, n, gl~, g12 and g22. The model parameters A, B, 
E and v (together with/~ and/~s if viscosity is kept in the model) and the exponent in [21] are all 
material constants and can be determined experimentally. Thus, the system of equations [30]-[34] 
can be solved in principle, if the boundary conditions are provided (section 6). 

5. M A P P I N G  TO C A R T E S I A N  C O O R D I N A T E S  

Having obtained a solution for U and g, the presentation of  the results will best be done in 
"laboratory" (cartesian) coordinates. The problem can be formulated as follows: knowing the g(is 
at every point of the deformed plane, calculate the equation of  the streamlines and timelines in 
the laboratory coordinates, i.e. 

c~y .- d--x = q~ (gij) [41] 

and 

respectively. The Jacobian of  the change 

(dY): : 

By definition of  the metric tensor gig, we also have 

dx2 + dY 2 = gu dt2 + 2gl2 dt dz + g22 dz2. 

It follows that 

~x 
~yy , = ff (gu), [42] 

of  coordinates (x,y)--+(t, z) is defined by the relation 

0 x l (  ) 
~ z ,  dt = { J , ,  J , 2 ) { d t )  
Oy dz \Jr2 J22]\dz/" [43] 

J,, J2t~(Jt, J,2~=(g,, g,2~. 

[44] 

[45] 

components of the Jacobian. The matrix equation The problem is solved if we can calculate the 
[45] can be rewritten as the system of scalar equations 

J~l + J21 = g l l  

Jr I JI2 + J2J'/22 = gl2 [46] 

J~2 + J~2 = g22- 

The symmetry of  the metric tensor results in an indeterminate system: taking J ,  as reference, the 
other elements can be calculated as 

J2t = +--(glt - J~l) I/2, [47] 

J,z = J,,gl2 ± 1_ [ ( g , ,  _ J~,)(g, tg22 - g]2)] '/2 [ 4 8 ]  
gll glt 
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and 

j= +_Jllg 1'2 gl2 
= + __ (g,, _ j~,)l:2. [49] 

gll gll 

The elements of  the Jacobian are further constrained by their own symmetry conditions, which 
arise from the commutativity of  second partial derivatives: 

c7 8x O J11 OJl: ¢3 0x 
. . . .  [50] 

Oz 8t & &t &t & 

and 

O dy OJ2~ 8J= O Oy 
Oz 8t Oz Ot 8t Oz" 

[511 

When the Js  are related through the metric tensor as above, it can be shown from the definition 
of the Ji/s, that these two equations are equivalent. Thus, with the components of  the metric tensor 
known, the last element of  the Jacobian must obey the relation 

OJ, l = ~ ~Jl,g,2 + ~ [ ( g , l -  J~,)(g,,g=- g~2)]1/2~, [52] 
Oz Ot ( gll --gll J 

subject to the upstream boundary condition that J~ = V. 
Hence, it follows from the theory of Jacobians that 

'~Y : 4,  (g" - J~')':2 [53] 
0x = J]7 = + Jll 

is the equation of the streamlines in the laboratory coordinates, with J~ given by the solution of 
[52]. Similarly, the timelines are given by 

0x , _ Ji2 [54] 
0y J=" 

It should be noted that a given field of  strain (metric tensor) must satisfy a compatibility 
condition, if the deformed configuration is to be obtained by a regular mapping from the reference 
configuration. The existence of continuously differentiable elements of  the Jacobian, ensures that 
such a mapping (x, y)~( t ,  z) does exist. Hence, the compatibility equation will automatically be 
satisfied. 

6. B O U N D A R Y  C O N D I T I O N S  

Equations [30]-[34] have to be solved on a rectangular grid in the t-z plane. Several types of 
boundary conditions will have to be applied along sections of  the boundaries. The entrance 
(t = - z )  and exit (t = z) sections are assumed to be far enough away from the nip for the direct 
effect of  the rolls to be negligible. Thus, t = - ~  corresponds to the equilibrium initial conditions; 
at t = z, the properties of  the mat  have also relaxed to equilibrium, with possibly a different 
thickness, anisotropy and/or velocity of  the mat. 

For simplicity, t = 0 is located at the center of  the contact area of  the mat with the rolls. In the 
absence of a fiber mat,  symmetry about  the mat  centerline indicates that the half-thickness plane 
will not be bent in the press, and provides a convenient axis z = 0. Call z = ~ the face of  the paper 
sheet. 

Let t = + 0 be the entrance and exit coordinates of  the outer surface at the nip. The length of 
the interval [ - 0 ,  + 0] is an experimental control parameter, to the extent that it will depend on 
the force applied by the rolls on the sheet. Inside the interval, the face of  the sheet must match 
the cylindrical shape of  the rolls, so that the curvature of  the boundary streamlines is imposed. 
As pointed out by one of  the reviewers of  this paper, imposing such a boundary condition 
leads to an ill-posed problem. Practically, a pressure profile can be imposed on the solid, the 
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corresponding solution calculated and the shape of the boundary adjusted by trial and error until 
a cylindrical streamline is obtained. 

In practice, one of the rolls is driven and imposes a shear stress on the face of the sheet, while 
the opposite roll drags on the opposite side. The applied shear stress can be modeled by Coulomb's 
law of friction, with the proportionality constant between the normal and tangential stresses 
modeling the degree of  lubrication between the pulp and the roll. 

With this in mind, the boundary conditions can be listed systematically, and are summarized in 
figure 4. 

At the upstream section (t = - z ) ,  the metric tensor is imposed as in [35]. The magnitude of V 
can be varied to simulate a range of  conditions. Experimental values of  the anisotropy can be 
introduced to initialize "a" .  With the upstream section sufficiently removed from the rolls, the 
water is simply carried in the fibers without any relative motion. The simplest assumption on the 
normal stresses is that no traction is applied in the direction of motion. This sets the reference 
metric tensor; 

t = - z a n d  O<z  <(:  

U I . . . .  U 2 0, gtt V 2, g22=a 2, gl2=g2t O, gij°--gij. [55] 

At the downstream section (t = z) conditions are similar, except that a number of properties are 
not known a priori. The fiber mat is not necessarily moving at the same velocity as at the upstream 
end. Anisotropy has to be calculated, and is related to the residual stresses through the metric 
tensor. All quantities will have relaxed to the new equilibrium values; 

t = z a n d  O<z <~: 

dgij 
U t = U  2=0 ,  - ~ - = 0 .  [56] 

Along the plane of  symmetry (z = 0), the normal water velocity must vanish, and there cannot 
be a tangential stress; 

z = 0 a n d  - T < t < z :  

U z=O, T 12+fzt2=O. [57] 
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The stresses in the above are calculated from the constitutive equations; z J2 vanishes if the water 
viscosity is neglected. 

Along the face of the sheet downstream of the rolls, one would expect that the normal water 
velocity would vanish. No stresses are applied on the boundary; 

t > 0 a n d  z = ( :  

U2=O, T ' 2 + f r ' 2 = 0 ,  T " + f z " = O .  [58] 

Upstream, the situation is similar in many ways, except that water is being forced out. Then, 
the normal velocity of the water results from the differences in hydraulic pressure between the 
solution inside the domain and ambient pressure (zero) at the boundary. Non-negative outward 
normal velocities should follow in order for the solution to be believable, although we do not know 
a priori where the normal velocity would vanish and where it is positive; 

t < - 0 a n d  z = ~ :  

r t = 0 ,  T ' 2 + f z ' 2 = O ,  T " + f T " = 0 .  [591 

In the above, n is given by [26] and [14]. 
The boundary conditions under the rolls have been discussed in the introduction to this 

section. Assuming impermeable rolls, no normal water velocity will be allowed; the normal 
water pressure gradient is given by [32] accordingly. For the metric tensor, two conditions are 
imposed; 

- 0  < t  < 0  and z =~:  

T 12 + f z  12~ 
U 2 = O, Tz 2 +fzz2j  assumed distribution/magnitude. [60] 

7. DISCUSSION 

The equations and boundary conditions derived above are a complement to empirical studies. 
From the experimentalist's perspective, the weak points of this approach must be glaring: we shall 
attempt to address some of them. On the other hand, the rigorous mathematical treatment, based 
on the methods of rational mechanics and well-documented phenomenological approximations, 
can provide a different insight into a complex industrial process such as wet pressing. All control 
parameters (mat velocity, nip pressure, mat thickness, driving power, roll radius), as well as the 
material constants, can be modified systematically and accurately. Qualitative effects of mat 
rheology can also be documented. A numerical solution such as is presented in section 8 should 
be regarded as a controlled experiment, with simplifications in configuration being balanced by the 
accuracy of the "measurement" of all variables in the flow field. 

Based on those observations, extensions of the model to more realistic conditions can be 
anticipated. First and foremost (and probably easiest) will be the introduction of the felt mat. While 
the numerical constants for the felt (thickness, porosity, mechanical properties etc.) are different 
from those of  the paper sheet, the basic equations remain unchanged. The loss of symmetry in the 
z direction, and the matching of solutions at the paper-felt interface, do not seem to pose an 
overwhelming difficulty. However, for a realistic description of an actual press, it is necessary to 
account for the fact that the felt will not be nearly saturated upstream of the nip--and that neither 
the felt nor the paper will be on the downstream side. In fact, two fluids percolate through the 
porous mats: air and water. The simplest representation of  the two fluid phases is that they remain 
separated by a sharp interface, the location of which has to be determined. The paper of Thigpen 
& Berryman (1985) provides the framework to extend our results, when the interphase forces are 
parameterized by pressure jumps and capillary forces at the air-water interface. Finally, the 
compliance of the rolls appears experimentally significant. Again, this is a relatively simple question 
of  matching two solutions: all stresses in the nip region of both rolls, the paper and the felt, must 
balance locally. 
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To this extent, the material presented in this article truly represents a first step in the direction 
of a better analytical understanding of the wet pressing process. The numerical solution of the 
equations in the next section exposes both merits and weaknesses of this approach. 

8. NUMERICAL IMPLEMENTATION 

Experimentally, severe limitations are encountered in the nature and accuracy of the measure- 
ments. The residence time in commercial nips is of the order of 0.001-0.002 s. The press nips are 
about l" long with a paper thickness of the order of 0.01". Therefore, the selection of the measured 
field variables is dictated more by feasibility than by the need for physical insight, and the 
documentation of the flow field is rudimentary. The numerical simulation has its own limitations, 
as seen below, but it must be considered successful if it accounts for empirical observations of 
changes in the system response under changes in the control parameters. Then, the computed flow 
field is a valuable surrogate measurement. 

Our model system consists of a sheet of water-saturated pulp being drawn between two 
cylindrical hard rolls. The single layer of porous pulp is modeled as elastic. The viscosity of the 
water is neglected, except insofar as its macroscopic effect manifests itself as Darcy's law for 
fluid-solid interaction. The friction between the rolls and the sheet follows Coulomb's model. 
Air is not allowed into the pulp during recovery downstream of the nip. 

The system of equations [30]-[34] has been solved by the Galerkin finite-element 
method. The field variables are approximated locally as polynomials of the nodal values, that are 
adjusted to minimize the residual in the equations. The procedure results in an algebraic system 
of equations for the nodal values. The system of equations contains 6 primary variables at 
each node (3 components of the metric tensor for the solid and 2 velocity components and the 
pressure for the water). The variables occur in products including as many as 5 factors. 
The computation of all combinations of these products is prohibitively time-consuming. 

A reduction in the number of factors in a product can be done by introducing secondary 
variables, for which the governing equations are the respective definition formulas. The increase 
in the number of equations results in a decrease in the computation time to establish the system 
matrix, and an increase in the number of iterations for each system. Numerical experimentation 
showed that the elimination of all products of more than 2 factors is most effective. The definitions 
of the secondary variables are listed as [BT]-[B28] and substitution of these definitions in [30]-[34] 
yields [B1]-[B6] in appendix B. 

Three nested iterative procedures define the code structure. At the core of the algorithms, the 
Galerkin finite-element method converts the set of partial differential equations to a set of algebraic 
equations. The successive over-relaxation (SOR) method is used to solve these algebraic equations. 
The outermost iterations consist of using the new solution as the initial condition, incrementing 
the load and repeating the process described above. Finite deformations are obtained by 
incremental increases in load. 

Linear shape functions are chosen for interpolation within the finite elements. This choice is 
dictated by the large number of terms and unknowns, which make everything but the simplest shape 
function prohibitively time-consuming. Furthermore, since the equations have, at most, first-order 
differentiations of variables, the C O continuity of the linear shape functions is sufficient. Because 
of the dependence of the solution on the current solution, which differs from element to element, 
the local residual equations have to be constructed at each iteration. 

The global matrix is stored in a banded format to take advantage of its structure. The boundary 
conditions are applied next, replacing the residual equations corresponding to given variables at 
the boundary nodes by equalities fixing the value of the specified variables at the nodes. The global 
matrix is further conditioned by a partial pivoting routine to allow the larger elements to be on 
the diagonal. 

The SOR procedure was used to solve the set of equations developed as above. This procedure 
minimizes the possibility of accumulation of roundoff errors, resulting in divergence from the 
solution. A small relaxation parameter of 0.01 had to be used to achieve convergence. After 
obtaining a solution for the increments, a new current solution is formed and the residual equations 
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are constructed to iterate the solution. This iterative process is contained until convergence is 
obtained within a tolerance level of 10 -6.  

Experimentation with meshes revealed that solution gradients in the thickness direction were 
negligible, in contrast to the large axial gradients direction. Hence, the solutions in the following 
section were obtained using a finite-element mesh consisting of only 2 elements in the thickness 
direction and 100 elements in the axial direction (see figure l). The calculations were limited to the 
nip area. The boundary conditions consisted of the applied tractions on the boundaries as well as 
Dirichlet conditions on the hydraulic pressure along the boundary. 

9. D E S C R I P T I O N  AND S O L U T I O N S  FOR CASE STUDIES 

Pressure-controlled and flow-controlled pressing are important extreme cases often cited in the 
literature (Wahlstrom 1960, Jewett 1984, Nilsson 1964, Wilder 1967). Pressure-controlled pressing 
results when the permeability is very high. In this case the removal of  water is limited by the amount 
of compression possible for a given amount of applied stress. In terms of the parameters used in 
the calculations, ~ ([19]), the coefficient of the body force in the momentum balance equations which 
is inversely related to the permeability, is small. On the other hand, flow-controlled pressing results 
when the removal of water is limited by the flow resistance of the material or the permeability is 
small. Correspondingly, the value of ~ is large. 

These first two case studies help develop confidence in the model results. As discussed earlier, 
the respective limitations of the experimental and computational approaches preclude any strict 
experimental verification in the near future. However, the trends in the numerical results are in 
agreement with observations. Following this, the third case study demonstrates the utility of our 
approach in predicting important consequences of  the presence, absence and direction of shear 
stress gradients across the thickness of  the sheet. 

A normal load of  1.7 x 106 N / m  2 was applied in the first two cases, while a load of 5.1 × 105 N/m 2 
was applied for the third case study. This resulted in a maximum strain of about 17% in the 
thickness direction for cases 1 and 2, and a strain of about 5% for case 3. The values of the various 
parameters used in the flow-controlled case are listed in table l, while those used in the 
pressure-controlled case are listed in table 2. 

The results are presented in the form of two graphs per solution. The first figure plots the 
fluid-phase pressure, or hydraulic pressure, and the total stress tensor components against 
the distance along the nip. The total stress tensor includes both the solid- and fluid-phase stresses. 
The distance along the nip is measured from the point at which the sheet enters the press nip. The 
other figure plots the axial (machine) direction and transverse (thickness) direction water velocities 
at the three levels along the nip. In both these figures, the values of the lowest level of nodes are 

Table 1, Parameters used in the flow-controlled case 

Resistance to the flow of water, ct 

Corresponding permeability 
Water velocity at roll surfaces 

Gradient of Al w.r.t, to g, ct' 
Hooke's coefficient, E 
Gradient of E w.r.t, to g, E'  
Poisson's ratio 
Thickness of the ingoing sheet 
Velocity of the fiber matrix in the 

machine direction 0.5 m/s 

Normal stress at the left edge 0 psi 
Normal stress at the nip center 200 psi 
Normal stress at the right edge 0 psi 
Normal stress gradient on the left 

and right edges 0 psi 

Axial stress at the left edge 50 psi 

Shear stress at the bottom - 1 5  psi 
Shear stress at the top - l 0  psi 

Table 2. Parameters used in the pressure-controlled case 

5.0 × I0 I° N s/m 4 Resistance to the flow of water, ~t 5.0 × 108 N s/m 4 
2.5 x 10 ~5 m-' Corresponding permeability 2.5 × 10-13 m 2 
0 m/s Hydraulic pressure at the sheet- 

felt interface 0 psi 

0.25 × 10 I° N s/m 4 Gradient of AI w.r.t, to g, ~" 0.25 x 10 I° N s/m 4 
I × 107 N/m-' Hooke's coefficient, E I × 107 N/m-' 
0.25 × 107 N/m 2 Gradient of E w.r.t, to g, E'  0.25 × 107 N / m  2 
0.05 

Poisson's ratio 0.05 0.5 mm 
Thickness of the ingoing sheet 0.5 mm 
Velocity of the fiber matrix in the 

machine direction 

Normal stress at the left edge 
Normal stress at the nip center 
Normal stress at the right edge 
Normal stress gradient on the left 

and right edges 

Axial stress at the left edge 

Shear stress at the bottom 
Shear stress at the top 

0.5 m/s 

0 psi 
200 psi 
0 psi 

0 psi 

50 psi 

- 15 psi 
- -  10 psi 
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connected by the - -  line, the values along the top surface by the . . . .  line and the values along 
the middle are connected by the - - - - - -  line. 

The pressure-controlled case results are presented in figures 5 and 6. Figure 5 shows that the 
gradients for the stress tensor components and the hydraulic pressures are minimal in the thickness 
direction, causing a superposition of  several of  the lines. A gradient in the shear stress component 
is imposed by the boundary conditions for traction, which causes the drop in the axial stress along 
the nip. This phenomenon is further explained later. It is to be noted that the hydraulic pressure 
attains a maximum at the center of the nip, where the maximum normal stresses are imposed, for 
this pressure-controlled situation. 

The axial and transverse water velocities for this pressure-controlled case are shown in figure 6. 
The gradients in the thickness direction are small and the water velocities in the thickness direction 
are negligible. The machine direction velocities show that water is pushed out axially from the 
center of  the nip with equal velocities. The maximum velocity is attained close to the center of the 
nip and then the water progresses to exist from both sides of  the nip. The assumption of  elastic 
behavior for the pulp allows the pulp to spring back to its original shape as the normal stresses 
are released. This causes the results to be symmetrical around the center of  the nip, as a consequence 
of the assumptions of elastic material and boundary conditions. 

Figure 7 presents the stress tensor components and the hydraulic pressure along the nip for this 
case of flow-controlled pressing. The maximum hydraulic pressure in this case is attained early on 
in the nip, for upstream of the center point of  the nip. Figure 8 shows that this causes the axial 
water velocity to be relatively small for most of the nip, with a strong outward flow in the initial 
part of  the nip. A negative hydraulic pressure is developed towards the end of the nip, causing an 
inflow of  water into the nip. This tendency was absent for the pressure-controlled case. The absolute 
values of the water velocities are much lower than in the pressure-controlled case, in accordance 
with the much lower permeability. The thickness direction water velocities are negligible as before, 
due to small gradients in the hydraulic pressure in that direction. 

As a third case, the effect of  imposed shear stress was studied with a smaller number of elements. 
Two elements were used in the thickness direction, as before, but the number of  elements in the 
axial direction was reduced to 23. The computation time is significantly less, while the accuracy 
of the solution is off by a few percent. Four sets of  conditions were examined: 

(a) Zero shear stress at all nodes. 
(b) Constant negative shear stress at all nodes. 
(c) A positive shear stress gradient in the thickness direction. 
(d) A negative shear stress gradient in the thickness direction. 
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T h e  exac t  n a t u r e  o f  the  shear  stresses in the  real  press  is n o t  k n o w n  because  it is e x t r e m e l y  difficult  

to  m e a s u r e  them.  H e n c e ,  the  stress d i s t r i bu t i ons  app l i ed  in this s tudy  a re  e s t ima tes  de r ived  f r o m  

C o u l o m b ' s  laws  o f  f r ic t ion .  T h e  p a p e r - r o l l  in te r face  c a n n o t  be  f r ic t ionless ,  wh ich  leads  one  to  infer  

t ha t  f r i c t iona l  forces  e q u a l  to s o m e  coeff ic ient  o f  f r i c t ion  t imes  the  n o r m a l  stress will  p reva i l  at  the  

in ter face .  

T h e  d i r ec t i on  o f  these  f r i c t iona l  forces ,  o r  shear  stresses,  d e p e n d s  on  the  press  ro l l ' s  ve loc i ty  

re la t ive  to  the  sheet  o f  p u l p  a n d  a lso  on  the  rol l  su r face ' s  coeff ic ient  o f  f r ic t ion  wi th  the  pulp .  

I f  the  b o t t o m  rol l  is d r iven  a n d  the  t o p  rol l  is n o t  (as is usua l ly  the  case)  a n d  i f  b o t h  rol ls  

h a v e  the  s a m e  coeff ic ient  o f  f r i c t ion  (which  is usua l ly  n o t  the  case),  a c o n s t a n t  nega t ive  shea r  stress 

will  p reva i l  t h r o u g h o u t  the  sheet .  O n  the  o t h e r  hand ,  i f  the  t o p  rol l  has  a h ighe r  coeff ic ient  o f  

f r i c t ion  t h a n  the l ower  roll ,  a pos i t ive  shea r  stress g r a d i e n t  will  be set up  in the  sheet.  S imi lar ly ,  

a nega t i ve  shear  stress g r a d i e n t  will  exist  i f  the  t o p  rol l  has  a l ower  coeff ic ient  o f  f r i c t ion  than  the  

l ower  roll .  

Table 3. Parameters used for the study of the effect of the 
shear stress and the shear-stress gradient 

Resistance to the flow of water, 
Corresponding permeability 
Water velocity at roll surfaces 

Gradient of AI w.r.t, to g, ct' 
Hooke's coefficient, E 
Gradient of E w.r.t, to g, E'  
Poisson's ratio 
Thickness of the ingoing sheet 
Velocity of the fiber matrix in the 

machine direction 

Normal stress at the left edge 
Normal stress at the nip center 
Normal stress at the right edge 
Normal stress gradient on the left 

and right edges 

Axial stress at the left edge 

1.0 x 10 I° N s /m 4 
1.245× 10 14m 2 
0 m/s 

0.25 x 10 I° N s/m 4 
1 x 107N/m 2 
0.25 x l07 N/m 2 
0.05 
0.5 mm 

0.5 m/s 

0 psi 
38 psi 
0 psi 

0 psi 

50 psi 

Four sets of shear stress conditions were used: (a) shear 
stress at all nodes 0psi; (b) shear stress at all nodes 
- 15 psi; (c) shear stress at the bottom = - 15 psi, shear 
stress at the top = - 8  psi; (d) shear stress at the bottom 
= - 1 6  psi, shear stress at the top = - 2 2  psi. 
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Figure 9. The stress components and the hydraulic pressure 
vs the distance along the nip, for the case when the shear 

stress is zero at all nodes. 
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Figure 10. The stress tensor components and the hydraulic 
pressure vs the distance along the nip, for the case when the 

shear stress is negative at all nodes. 

The values of  the various parameters used in the 4 sets of conditions for this third case study 
are listed in table 3. 

Figures 9-12 present the stress tensor components and hydraulic pressure for these 4 cases. It 
is seen that the axial stresses are not affected for constant-negative or zero shear stresses at all 
nodes. However, the axial tensile stresses decreased along the machine direction for a positive 
shear-stress gradient in the thickness direction, while they increased for the case of a negative 
shear-stress gradient in the thickness direction. 

We may infer that if the top surface of  the paper sheet has a higher shear stress than the bottom 
surface, due to, for example, a higher coefficient of friction with the top roll, the tensile forces in 
the sheet will decrease along the nip. This will result in a smaller volume of material coming out 
of  the nip, implying a higher dewatering rate. Since dewatering is an important objective of wet 
pressing, this result is of  practical significance. 
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Figure 1 I. The stress tensor components and the hydraulic 
pressure vs the distance along the nip, for the case when 
the shear stress gradient is positive along the transverse 

direction. 
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Figure 12. The stress tensor components and the hydraulic 
pressure vs the distance along the nip, for the case when 
the shear stress gradient is negative along the transverse 

direction. 
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10. C O N C L U S I O N S  

In the first part of the article, the equations governing two-dimensional flows in rapidly 
deforming porous media are obtained in material coordinates. The second part presents numerical 
results based on these equations. 

The use of generalized coordinates provides the level of generality necessary to describe, in 
principle, the response of  layered porous materials and multiphase flows under realistic boundary 
conditions. However, full exploitation of this potential is limited by the numerics. The large number 
of nodal variables severely limits the grid resolution. This limitation echoes the shortcomings of 
experimental approaches to the problem. 

The model has provided results consistent with experience and intuition, for example the effect 
of the permeability on the field variables like the water velocity and hydraulic pressure. It has also 
provided predictions of the effects of variables that have not yet been investigated, namely the shear 
stresses and the shear-stress gradients. In conjunction with other methods, the results obtained with 
this comprehensive approach to modeling of the wet processing process may provide a better 
understanding of the physics of the process. 
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APPENDIX A 

Constitutive Equation for  a Viscoelastic Fiber Mat  

The case of a viscoelastic solid is easily derived by combining the elastic and viscous properties. 
Let us write 

where the rate of change in the metric (rate of strain) is computed along a particle trajectory. Since 
we consider a steady-state flow in the x ~ direction, we have 

dgq = u l t~gq [A2] 
dt t~x 1" 

Consequently, the stress tensor can be expressed as 

T q = EOkmTk", ~ Fqk"U ~ C3gkn, 
2 0x I . [A3] 

The elastic terms are calculated as above; the viscous term can be expressed in terms of the 
Christoffel symbols, as 

Fijkmul Ogq_ qk,, I F" ~ [A4] ff~x, - F u (g,,,,F"kt + g,,k ,,IJ. 

If the viscous part of the stress is expressed in terms of the velocity derivatives, we have 

1 I" . Du  i ik DuJ'~ = gjK 
S q - ~  D. + g  ~xk  ). [A5] 

When the partial derivatives of the velocity vanish (see the next appendix), the expression reduces 
to 

I z j k ~ i  m " " Sq = 5tg t k , , u  + g'kF~.,,um). [A6] 

Under a "Newtonian" assumption, the viscous part of stress is then 

T q=  2~s S q = #2 (gikF~ - mUm+ g'kFi,,U"')" [A7] 

Comparison of [20] and [23] shows that consistency is achieved with the phenomenological 
coefficients F: 

F q~m = #sg~kg i'' . [A8] 
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A P P E N D I X  B 

Equations in Terms of Primary and Secondary Variables 
The int roduct ion of  secondary variables ([B7]-[B28]) yields [ B I ] - [ B 6 ] .  

Compat ib i l i ty  equat ion.  

Ell122+~:22111+2G2h2=0. 

Total  material  m o m e n t u m  balance,  in the x L direction, 

D T  I1 D T  12 

F27 = ~ 4 D x  2 • 

Total  mater ial  m o m e n t u m  balance, in the x 2 direction, 

DTI2 DT2"~ 
v:8 = -D~i-xl -+ Dx 2" 

Water  m o m e n t u m  balance,  in the x ~ direction. 

D(prg I1) D(prg 12) 
U 23 ~.~ ~ e  I -~ - -  -~- - -  

D x  i D x  2 

Wate r  m o m e n t u m  balance,  in the x 2 direction, 

Wate r  mass  balance,  

Stress-s t rain relations. 

and 

D(prg 'z) D(prg 12) 
U24 : ~ U  2 + D x  ~ + Dx  ~ 

DU I DU 2 Ui dpw 
Pw-~i-x I + Pw ~-~x2 + ~ x  ~+ U 2 . 

T i l _  E [ 2v 
2(1 + v) L 1--~vglLgk"' 

2~ Ik~y Im~[ o + o ~. j ~ k ° , - g ° . , ] .  

E ~ 2v gt2gk., ][g~m-- g~,,,] 
TI2 - -  2(1 + v) L 1 - 2v + 2glkg2m 

E [ 2v g22gk,,, ] 
T = -  2(! + v ) L ~  +2g2kg ' '  [gk.,-g~'-,,,]. 

Secondary variable definitions 
Dete rminan t  o f  the metric tensor,  

g = gllgz2 --gT2. 

Cont rava r i an t  metric tensor components ,  

g ll g22 

g 

gl2 _ - - g l ~  
g 

and 

g22 g l l  . 

g 

[Bl] 

[B21 

[B3] 

[B4] 

[B5] 

[B6] 

[B7] 

[B8] 

[B9I 

[Bl0] 

[Bll]  

[Bl2] 

[BI3] 
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Strain tensor components,  

and 

Water  fraction in the material, 

Partial density of  the water phase, 

cll =gl~ --g°l 

~:12 = g12 -- g°2 

¢22 = g22 -- g°2. 

g -- (1 -- q~o)go 
4 ' =  

(1 -- q~0)g0 

pw = ~b (water density). 

Partial density of  the solid phase,  

Ps = ~b + (so l id-phase  density)(1  - q~0)g0. 

Definition of  the initial metric tensor components,  

(a2(1 ! :g,___2)2_+ V2g~2"~ 
gO,=\ ( 1 1 - & , ) 2 7  -2g- - ' g ' 2  ,] 

V 2 -  aI( 1 -- gll )'~ 
g°2 = -(l i-T, ,  ~= 7 7,~ ] 

and 

Definition of  variable 23, 

Definition of  variable 24, 

/a2( l  i _ g,, )2 + a2g22~ 
g°2=\ ~_gi,)2+g~----------;-]" 

f U I DUI 2 DUI\ 
V23 = pw~ -D~xl + U -O-~x2 ). 

V24 -- p w ( U  I ~-i-X i -]- U DUZ 2 DU2"~ D~TX2)" 

Total material velocity in direction c ~, 

ul = (pwU' + (Ps-Pw) V) 

Ps 

Total  material velocity in direction x 2, 

u 2 _ (Pw U2 + (P~ -- pw)0) 

P~ 

Definition of  variable 27, 

Definition of  variable 28, 

f ,Du' u2DUt~ 
=P4," + 

/u, Du-'  
v27 = P , ~  ~-~xl + u2 Dx%] ' 

[BI4] 

[815] 

[BI61 

[B17] 

[818] 

[BI91 

[B20] 

[B21] 

[B22] 

[B23] 

[B24] 

[B25] 

[B26] 

[B27] 

[B28] 
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